1. Let G be a set, $e \in G$ and * be a binary operator on G. When is (G, *, e) called a group? Let $f : \mathbb{N} \to \mathbb{Z}$ be the bijective function given by f(m) = m/2 if m is even and f(m) = (1-m)/2 if m is odd. For $a, b \in \mathbb{N}$, let $a * b = f^{-1}(f(a) + f(b))$. Show that $(\mathbb{N}, *, 1)$ is an abelian group. Solution:

We say (G, *, e) is a group, if it satisfies the following properties

(i) Closure: for all $a, b \in G, a * b \in G$.

(ii) Associativity: for all $a, b, c \in G, a * (b * c) = (a * b) * c$.

(iii) Identity element: for every element $a \in G$, e * a = a * e = a.

(iv) Inverse element: for each $a \in G$, there exists an element $b \in G$ such that a * b = b * a = e.

As f is a bijection from \mathbb{N} to \mathbb{Z} , for $a, b \in \mathbb{N}$, $f^{-1}(f(a) + f(b)) \in \mathbb{N}$. So $a * b \in \mathbb{N}$. Let $a, b, c \in G$. Then we have (f(a) + f(b)) + f(c) = f(a) + (f(b) + f(c)), since $(\mathbb{Z}, +)$ is associative. Now

$$\begin{aligned} a*(b*c) &= a*(f^{-1}(f(b)+f(c))) \\ &= f^{-1}[f(a)+f(f^{-1}(f(b)+f(c)))] \\ &= f^{-1}[f(a)+(f(b)+f(c))] \\ &= f^{-1}[(f(a)+f(b))+f(c)] \\ &= f^{-1}[f(f^{-1}(f(a)+f(b))))+f(c)] \\ &= f^{-1}[f(a*b)+f(c)] \\ &= (a*b)*c. \end{aligned}$$

Therefore $(\mathbb{N}, *)$ is associative.

 $1 \in \mathbb{N}$ and we have f(1) = 0. For any $a \in \mathbb{N}$, $a * 1 = f^{-1}[f(a) + f(1)] = f^{-1}(f(a)) = a$ and $1 * a = f^{-1}[f(1) + f(a)] = f^{-1}(f(a)) = a$. So 1 is unity. For $a \in \mathbb{N}$, $f(a) \in \mathbb{Z}$ so that $-f(a) \in \mathbb{Z}$. Therefore $f^{-1}(-f(a)) \in \mathbb{N}$. Let $b = f^{-1}(-f(a))$. Since $f^{-1}(0) = 1$, $a * b = f^{-1}[f(a) + f(b)] = f^{-1}[f(a) + (-f(a))] = f^{-1}(0) = 1$. So every element has Inverse in \mathbb{N} .

Let $a, b \in \mathbb{N}$. Then we have f(a) + f(b) = f(b) + f(a), since $(\mathbb{Z}, +)$ is abelian. Consider $a * b = f^{-1}(f(a) + f(b)) = f^{-1}(f(b) + f(a)) = b * a$. Therefore $(\mathbb{N}, *)$ is an abelian group.

2. Let G be a group and $x \in G$. Define the order of x. Let $x, y \in G$ be of finite order. Show that the order of xy is finite, if G is abelian. Show that this fails if G is not abelian. Solution:

If m is the least positive integer such that $x^m = e$, e is the identity in G, we say the order of x is m.

Let $x, y \in G$ and the orders of x, y are m, n respectively. If G is abelian, $(xy)^i = x^i y^j$ for any $i \in \mathbb{Z}$. Now consider $(xy)^{mn} = x^{mn} y^{mn} = (x^m)^n (y^n)^m = e$. Therefore xy is of order less than mn.

If G is not abelian, the above is not true. For example, $G = GL_2(\mathbb{R}) = \{A_{2\times 2}(\mathbb{R}) : |A| \neq 0\}$ is a non abelian group under matrix multiplication. Let $A = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. Then o(A) = 2,

$$o(B) = 2$$
 and $AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. For any $n \in \mathbb{N}$, $(AB)^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Therefore the order of AB is infinite.

3. Show that the group \mathbb{R}/\mathbb{Z} is isomorphic to $S^1 = \{z \in C : |z| = 1\}$. What is image of \mathbb{Q}/\mathbb{Z} under the isomorphism you found in the previous part?.

Solution:

Define $\varphi : \mathbb{R}/\mathbb{Z} \mapsto S^1 = \{z \in C : |z| = 1\}$ by $\varphi(x + \mathbb{Z}) = e^{2\pi i x}, \ 0 \le x < 1$. Then φ is an isomorphism.

If φ is from \mathbb{Q}/\mathbb{Z} to S^1 . Then $\varphi(p/q + \mathbb{Z}) = e^{2\pi i p/q}, \ 0 \le p/q < 1$. Therefore $\varphi(\mathbb{Q}/\mathbb{Z}) = \{z \in \mathbb{C} : z^n = z^n \in \mathbb{C} : z^n = z^n \in \mathbb{C} \}$

1, *n* th roots of unity, for some $n \in \mathbb{N}$.

4. Let G be a group. What is an automorphism of G?. Show the group of automorphisms of $(\mathbb{Z}/n, +)$ is isomorphic to $((\mathbb{Z}/n)^*, .)$. Compute Aut (\mathbb{Z}) . Solution:

An automorphism φ from a group (G, *) to itself is a bijective function such that $\varphi(a * b) = \varphi(a) * \varphi(b)$ for all $a, b \in G$.

To show $(\mathbb{Z}/n, +)$ is isomorphic to $((\mathbb{Z}/n)^*, .)$, see Theorem 6.4, Contemporary Abstract algebra by Joseph A. Gallian (page 125).

Let φ be an automorphism of $(\mathbb{Z}, +)$. Since 1 is a generator of $(\mathbb{Z}, +)$, $\varphi(1)$ is also a generator of $\varphi(\mathbb{Z}) = \mathbb{Z}$. So that $\varphi(1)$ is either 1 or -1. Therefore $\varphi_1(x) = x$, $\varphi_2(x) = -x$, for all $x \in G$, are the automorphisms of $(\mathbb{Z}, +)$.

5. When is a subgroup of a group G called normal subgroup? Let D_{14} be the dihedrel group of order 14. Show the only nontrivial proper normal subgroup of D_{14} is the subgroup consisting of rotations. Let $\phi: D_{14} \to S_5$ be a group homomorphism. Show that the image $\text{Im}(\phi)$ has at most two elements. Solution:

Normal Subgroup: A subgroup H of G is said to be a normal subgroup of G if for every $g \in G$ and $h \in \mathbb{H}$, $ghg^{-1} \in H$.

We know that set of all rotations in D_{14} is a subgroup of D_{14} and the order of this subgroup is 7. The number of 7-sylow's subgroups of D_{14} is 7k + 1, where 7k + 1 devides 14 and $k \in \{0\} \cup \mathbb{N}$. This gives k = 0, so that there are only one 7-sylow subgroup and it is of order 7. Therefore it is a normal subgroup of D_{14} and it is the subgroup consisting of rotations.

The number of 2-sylow's subgroups of D_{14} is 2k + 1, where 2k + 1 devides 14 and $k \in \{0\} \cup \mathbb{N}$. So number of 2-sylow's subgroups are either 1 or 7. The order of 2-sylow's subgroup is 2. If suppose D_{14} has unique 2-sylow subgroup, then it is normal subgroup of D_{14} . Now let H and K be the 7-sylow subgroup and 2-sylow subgroup respectively. As H and K are of prime order, they are cyclic groups. So $H = \langle x \rangle$, $K = \langle y \rangle$ for some $x, y \in G$. Since H, K are normal subgroups of D_{14} , we have xy = yx. So that o(xy) = o(x)o(y) = 7.2 = 14. This gives D_{14} is a cyclic group generated by xy, which is a contradiction. So D_{14} has 7 2-sylow subgroups. Therefore they are not normal subgroups. Hence D_{14} has unique proper normal subgroup.

Let $\phi: D_{14} \to S_5$ be a group homomorphism. Then $D_{14}/\ker(\phi) \cong \operatorname{Im}(\phi)$. As $\ker(\phi)$ is a normal subgroup of D_{14} , the possibilities of order of $\ker(\phi)$ are 1, 2, 7, 14. Since D_{14} has no normal subgroups of order 2, $|\ker(\phi)| \neq 2$. If $|\ker(\phi)| = 1$, then $|D_{14}|/|\ker(\phi)| = |\operatorname{Im}(\phi)| = 14$. This is not possible, since $\operatorname{Im}(\phi)$ is a subgroup of S_5 and 14 does not devide 120, order of S_5 . So $|\ker(\phi)| \neq 1$. Therefore the order of $\ker(\phi)$ is either 7 or 14. If $|\ker(\phi)| = 7$, then $|\operatorname{Im}(\phi)| = |D_{14}|/|\ker(\phi)| = 2$. If $|\ker(\phi)| = 14$, then $|\operatorname{Im}(\phi)| = |D_{14}|/|\ker(\phi)| = 1$. Hence, in any case $\operatorname{Im}(\phi)$ has atmost two elements.

6. Define the centre of a group G. Suppose G has unique element x of order 2. Then show that x is in the centre of G.

Solution:

The centre of a group G, $Z(G) = \{x \in G | xy = yx, \forall y \in G\}.$

Let $x \in G$ be only the element of order 2. But, for any $y \in G$, we have $o(y^{-1}xy) = o(x) = 2$. So that $y^{-1}xy = x$. Therefore $x \in Z(G)$.